Generate doodle of certain things using GANs
!pip install tqdm
Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (4.26.0)
!wget https://storage.googleapis.com/quickdraw_dataset/full/numpy_bitmap/hand.npy
Redirecting output to ‘wget-log’.
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import tensorflow as tf
import pickle as pkl
import time
data = np.load('hand.npy')
data.shape
(291773, 784)
fig=plt.figure(figsize=(10, 10))
columns = 15
rows = 10
for i in range(1, columns*rows):
img = data[i+44].reshape((28,28))
fig.add_subplot(rows, columns, i)
plt.imshow(img)
plt.show()
def model_inputs(real_dims, z_dims):
inputs_real = tf.placeholder(tf.float32, shape=(None, real_dims), name='input_real')
inputs_z = tf.placeholder(tf.float32, shape=(None, z_dims), name='input_z')
return inputs_real, inputs_z
from tqdm import trange
def get_data(path):
try:
data = np.load(path)
Y = []
for i in trange(data.shape[0]):
Y.append([1,0])
Y = np.array(Y)
(x_train, y_train, x_test, y_test) = train_test_split(data, Y)
x_train = (x_train.astype(np.float32)) / 255
x_train = x_train.reshape(x_train.shape[0], 784)
return (x_train, y_train, x_test, y_test)
except Exception as e:
print (e)
x_train, y_train, x_test, y_test = get_data('hand.npy')
100%|██████████| 291773/291773 [00:00<00:00, 395182.40it/s]
x_train.shape
(218829, 784)
def generator(z, out_dims, n_units=128, reuse=False, alpha=0.01):
with tf.variable_scope('generator', reuse=reuse):
#hidden layer
h1 = tf.layers.dense(z,n_units, activation=None,)
#leaky relu implementation
h1 = tf.maximum(alpha*h1, h1)
#tanh
logits = tf.layers.dense(h1, out_dims)
out = tf.tanh(logits)
return out
def discriminator(x, n_units=128, reuse=False, alpha=0.01):
with tf.variable_scope('discriminator', reuse=reuse):
#hidden layer
h1 = tf.layers.dense(x, n_units, activation=None)
#leaky_relu
h1 = tf.maximum(alpha*h1, h1)
#sigmoid
logits = tf.layers.dense(h1, 1, activation=None)
out = tf.sigmoid(logits)
return out, logits
#hyperparams
r_size = 784
z_size = 100
g_units = 128
d_units = 128
alpha = 0.01
smooth = 0.1
tf.reset_default_graph()
inputs_real, inputs_z = model_inputs(r_size, z_size)
g_out = generator(inputs_z, r_size, g_units)
d_out_real, real_logit = discriminator(inputs_real,)
d_out_fake, fake_logits = discriminator(g_out, reuse=True)
d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=real_logit, labels=tf.ones_like(real_logit)*(1-smooth)))
d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_logits, labels=tf.zeros_like(fake_logits)))
d_loss = d_loss_fake+d_loss_real
g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_logits, labels=tf.ones_like(fake_logits)))
lr = 0.002
tvar = tf.trainable_variables()
gvar = [var for var in tvar if var.name.startswith('generator')]
dvar = [var for var in tvar if var.name.startswith('discriminator')]
d_opt = tf.train.AdamOptimizer(learning_rate=lr).minimize(d_loss, var_list=dvar)
g_opt = tf.train.AdamOptimizer(lr).minimize(g_loss,var_list=gvar)
start = time.time()
batch_size = 100
epochs = 500
samples = []
losses = []
# Only save generator variables
saver = tf.train.Saver(var_list=gvar)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for e in range(epochs):
for ii in range(x_train.shape[0]//batch_size):
batch = x_train[np.random.randint(0, x_train.shape[0], size=batch_size)]
batch_images = batch*2 - 1
# Sample random noise for G
batch_z = np.random.uniform(-1, 1, size=(batch_size, z_size))
# Run optimizers
_ = sess.run(d_opt, feed_dict={inputs_real: batch_images, inputs_z: batch_z})
_ = sess.run(g_opt, feed_dict={inputs_z: batch_z})
# At the end of each epoch, get the losses and print them out
train_loss_d = sess.run(d_loss, {inputs_z: batch_z, inputs_real: batch_images})
train_loss_g = g_loss.eval({inputs_z: batch_z})
if e%10 == 0:
print("Epoch {}/{}...".format(e, epochs),
"Discriminator Loss: {:.4f}...".format(train_loss_d),
"Generator Loss: {:.4f}".format(train_loss_g))
# Save losses to view after training
losses.append((train_loss_d, train_loss_g))
# Sample from generator as we're training for viewing afterwards
sample_z = np.random.uniform(-1, 1, size=(16, z_size))
gen_samples = sess.run(
generator(inputs_z, r_size, n_units=g_units, reuse=True, alpha=alpha),
feed_dict={inputs_z: sample_z})
samples.append(gen_samples)
saver.save(sess, './checkpoints/generator.ckpt')
# Save training generator samples
with open('train_samples.pkl', 'wb') as f:
pkl.dump(samples, f)
end = time.time()
print('Time elapsed : ', (end-start)/60, ' mins.')
Epoch 0/500... Discriminator Loss: 1.6707... Generator Loss: 1.4493
Epoch 10/500... Discriminator Loss: 0.9074... Generator Loss: 2.4779
Epoch 20/500... Discriminator Loss: 1.1374... Generator Loss: 2.0511
Epoch 30/500... Discriminator Loss: 0.9474... Generator Loss: 1.7452
Epoch 40/500... Discriminator Loss: 0.8880... Generator Loss: 2.4058
Epoch 50/500... Discriminator Loss: 0.8076... Generator Loss: 1.9397
Epoch 60/500... Discriminator Loss: 1.1116... Generator Loss: 2.3747
Epoch 70/500... Discriminator Loss: 1.1073... Generator Loss: 1.9609
Epoch 80/500... Discriminator Loss: 0.6991... Generator Loss: 2.5973
Epoch 90/500... Discriminator Loss: 0.7232... Generator Loss: 2.5385
Epoch 100/500... Discriminator Loss: 0.9148... Generator Loss: 2.5839
Epoch 110/500... Discriminator Loss: 0.8684... Generator Loss: 2.0452
Epoch 120/500... Discriminator Loss: 0.8051... Generator Loss: 2.4832
Epoch 130/500... Discriminator Loss: 0.7279... Generator Loss: 2.3884
Epoch 140/500... Discriminator Loss: 0.7729... Generator Loss: 2.6445
Epoch 150/500... Discriminator Loss: 0.9274... Generator Loss: 2.0117
Epoch 160/500... Discriminator Loss: 0.8559... Generator Loss: 2.1539
Epoch 170/500... Discriminator Loss: 0.8468... Generator Loss: 2.6925
Epoch 180/500... Discriminator Loss: 0.9560... Generator Loss: 2.1045
Epoch 190/500... Discriminator Loss: 0.7690... Generator Loss: 2.5542
Epoch 200/500... Discriminator Loss: 0.7464... Generator Loss: 2.2122
Epoch 210/500... Discriminator Loss: 0.9038... Generator Loss: 2.2893
Epoch 220/500... Discriminator Loss: 0.8363... Generator Loss: 2.3467
Epoch 230/500... Discriminator Loss: 0.8801... Generator Loss: 2.4203
Epoch 240/500... Discriminator Loss: 0.7290... Generator Loss: 2.4522
Epoch 250/500... Discriminator Loss: 0.9505... Generator Loss: 2.9067
Epoch 260/500... Discriminator Loss: 0.7524... Generator Loss: 2.7188
Epoch 270/500... Discriminator Loss: 0.6982... Generator Loss: 2.9462
Epoch 280/500... Discriminator Loss: 0.6907... Generator Loss: 3.1297
Epoch 290/500... Discriminator Loss: 0.9001... Generator Loss: 2.6899
Epoch 300/500... Discriminator Loss: 0.8052... Generator Loss: 2.6376
Epoch 310/500... Discriminator Loss: 0.7071... Generator Loss: 2.7365
Epoch 320/500... Discriminator Loss: 0.7122... Generator Loss: 2.1293
Epoch 330/500... Discriminator Loss: 0.6925... Generator Loss: 2.7369
Epoch 340/500... Discriminator Loss: 0.6606... Generator Loss: 2.7011
Epoch 350/500... Discriminator Loss: 0.8017... Generator Loss: 2.7372
Epoch 360/500... Discriminator Loss: 0.7386... Generator Loss: 2.5534
Epoch 370/500... Discriminator Loss: 0.7761... Generator Loss: 2.6640
Epoch 380/500... Discriminator Loss: 0.8729... Generator Loss: 2.5655
Epoch 390/500... Discriminator Loss: 0.7941... Generator Loss: 2.4595
Epoch 400/500... Discriminator Loss: 0.7133... Generator Loss: 2.6706
Epoch 410/500... Discriminator Loss: 0.8759... Generator Loss: 2.2614
Epoch 420/500... Discriminator Loss: 0.8227... Generator Loss: 2.6058
Epoch 430/500... Discriminator Loss: 0.7340... Generator Loss: 2.5549
Epoch 440/500... Discriminator Loss: 0.8911... Generator Loss: 2.1466
Epoch 450/500... Discriminator Loss: 0.8063... Generator Loss: 2.6061
Epoch 460/500... Discriminator Loss: 0.7884... Generator Loss: 2.8062
Epoch 470/500... Discriminator Loss: 0.8174... Generator Loss: 2.7951
Epoch 480/500... Discriminator Loss: 0.8458... Generator Loss: 2.4348
Epoch 490/500... Discriminator Loss: 0.8786... Generator Loss: 2.3088
Time elapsed : 100.79581373929977 mins.
fig, ax = plt.subplots()
losses = np.array(losses)
plt.plot(losses.T[0], label='Discriminator')
plt.plot(losses.T[1], label='Generator')
plt.title("Training Losses")
plt.legend()
plt.show()
def view_samples(epoch, samples):
fig, axes = plt.subplots(figsize=(5,5), nrows=4, ncols=4, sharey=True, sharex=True)
for ax, img in zip(axes.flatten(), samples[epoch]):
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
im = ax.imshow(img.reshape((28,28)), cmap='Greys')
return fig, axes
# Load samples from generator taken while training
with open('train_samples.pkl', 'rb') as f:
samples = pkl.load(f)
_ = view_samples(299, samples)
rows, cols = 10, 10
fig, axes = plt.subplots(figsize=(8,6), nrows=rows, ncols=cols, sharex=True, sharey=True)
for sample, ax_row in zip(samples[::int(len(samples)/rows)], axes):
for img, ax in zip(sample[::int(len(sample)/cols)], ax_row):
ax.imshow(img.reshape((28,28)), cmap='Greys')
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)